With an ever-growing number of parameters defining increasingly complex networks, Deep Learning has led to several breakthroughs surpassing human performance. As a result, data movement for these millions of model parameters causes a growing imbalance known as the memory wall. Neuromorphic computing is an emerging paradigm that confronts this imbalance by performing computations directly in analog memories. On the software side, the sequential Backpropagation algorithm prevents efficient parallelization and thus fast convergence. A novel method, Direct Feedback Alignment, resolves inherent layer dependencies by directly passing the error from the output to each layer. At the intersection of hardware/software co-design, there is a demand for developing algorithms that are tolerable to hardware nonidealities. Therefore, this work explores the interrelationship of implementing bio-plausible learning in-situ on neuromorphic hardware, emphasizing energy, area, and latency constraints. Using the benchmarking framework DNN+NeuroSim, we investigate the impact of hardware nonidealities and quantization on algorithm performance, as well as how network topologies and algorithm-level design choices can scale latency, energy and area consumption of a chip. To the best of our knowledge, this work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa. The best results achieved for accuracy remain Backpropagation-based, notably when facing hardware imperfections. Direct Feedback Alignment, on the other hand, allows for significant speedup due to parallelization, reducing training time by a factor approaching N for N-layered networks.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
尽管最近的分布(OOD)检测,异常检测和不确定性估计任务的最新进展,但并不存在任务不合时宜的和事后方法。为了解决此限制,我们设计了一种基于聚类的新型结合方法,称为任务不可知和事后看不见的分布检测(TAPUDD),该方法利用了从对特定任务进行训练的模型中提取的功能。它明确地包括Tap-Mahalanobis,该曲线簇起训练数据集的特征,并确定了所有群集的测试样品的最小Mahalanobis距离。此外,我们提出了一个结合模块,该模块汇总了对不同数量簇的迭代TAP-MAHALANOBIS的计算,以提供可靠,有效的群集计算。通过对合成和现实世界数据集进行的广泛实验,我们观察到我们的方法可以在各种任务中有效地检测出看不见的样本,并与现有基线进行更好的或与现有基线相比。为此,我们消除了确定簇数量的最佳价值的必要性,并证明我们的方法对于大规模分类任务更可行。
translated by 谷歌翻译
联合学习(FL)是一个活跃的研究领域。采用FL的最合适区域之一是医疗领域,必须尊重患者隐私。但是,先前的研究并未完全考虑谁最有可能在医疗领域使用FL。渴望采用FL的不是医院,而是想要开发具有真实患者记录的机器学习模型的服务提供商。此外,服务提供商希望以最低成本的可能性来最大程度地提高模型的性能。在这项工作中,我们提出了FL方法的经验基准,考虑了三个现实世界数据集的性能和货币成本:电子健康记录,皮肤癌图像和心电图数据集。我们还建议使用近端正则化的联合学习,除了局部归一化(FEDPXN),该学习使用FEDPROX和FEDBN的简单组合优于所有其他FL算法,而仅消耗比最高效率的方法稍大一些。
translated by 谷歌翻译
传统的深度传感器产生准确的真实世界深度估计,即使仅在仿真域训练的最先进的学习方法也会超越。由于在模拟域中容易获得地面真理深度,但在真实域中很难获得,因此我们提出了一种利用两个世界的最佳方法的方法。在本文中,我们展示了一个新的框架,ActiveZero,这是一个混合域学习解决方案,适用于不需要真实世界深度注释的活动立体宽度系统。首先,我们通过使用混合域学习策略来证明我们的方法对分发外数据的可转换性。在仿真域中,我们在形状原语数据集上使用监督差异丢失和自我监督损失的组合。相比之下,在真实域中,我们只在数据集中使用自我监督损失,这些损失是从培训仿真数据或测试真实数据的分发。其次,我们的方法介绍了一种名为Temporal IR的自我监督损失,以增加我们在难以感知地区的重新注入的鲁棒性和准确性。最后,我们展示了如何训练该方法的端到端,并且每个模块对于获得最终结果很重要。关于真实数据的广泛定性和定量评估表明了甚至可以击败商业深度传感器的最新状态。
translated by 谷歌翻译
现代深度神经网络(DNN)的成功基于其在多层转换投入以建立良好高级表示的能力。因此,了解这种表示学习过程至关重要。但是,我们不能使用涉及无限宽度限制的标准理论方法,因为它们消除了代表性学习。因此,我们开发了一个新的无限宽度限制,即表示的学习限制,该限制表现出表示形式的学习反映,但在有限宽度网络中,但同时仍然非常容易处理。例如,表示学习限制在深处的高斯过程中提供了恰好具有多种内核的多元高斯后期,包括所有各向同性(距离依赖)内核。我们得出一个优雅的目标,描述了每个网络层如何学习在输入和输出之间插值的表示形式。最后,我们使用此限制和目标来开发对内核方法的灵活,深刻的概括,我们称之为深内核机器(DKMS)。我们表明,可以使用受高斯过程文献中诱导点方法启发的方法将DKMS缩放到大数据集,并且我们表明DKMS表现出优于其他基于内核方法的性能。
translated by 谷歌翻译
由于其宽度趋于无穷大,如果梯度下降下的深度神经网络的行为可以简化和可预测(例如,如果神经切线核(NTK)给出,则如果适当地进行了参数化(例如,NTK参数化)。但是,我们表明,神经网络的标准和NTK参数化不接受可以学习特征的无限宽度限制,这对于训练和转移学习至关重要。我们对标准参数化提出了简单的修改,以允许在极限内进行特征学习。使用 * Tensor程序 *技术,我们为此类限制提供了明确的公式。在Word2Vec和Omniglot上通过MAML进行的几杆学习,这是两个依赖特征学习的规范任务,我们准确地计算了这些限制。我们发现它们的表现都优于NTK基准和有限宽度网络,后者接近无限宽度的特征学习表现,随着宽度的增加。更普遍地,我们对神经网络参数化的自然空间进行分类,该空间概括了标准,NTK和平均场参数化。我们显示1)该空间中的任何参数化都可以接受特征学习或具有内核梯度下降给出的无限宽度训练动力学,但并非两者兼而有之; 2)可以使用Tensor程序技术计算任何此类无限宽度限制。可以在github.com/edwardjhu/tp4上找到我们的实验代码。
translated by 谷歌翻译
Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.
translated by 谷歌翻译
The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations.
translated by 谷歌翻译